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There is therefore a real need to design multifunctionnal contrast agents, which can 
produce multiple targeting and vizualisation of organs or cells (detectable changes in the MR 
signal intensity1 of the target tissue or organ by changing its MR relaxation properties and 
detectable optical signals for example2, 3). These contrast agents require (i) a large number of 
paramagnetic centers selectively bound to the target tissue and (ii) a sufficiently high 
molecular weight of the MRI agents in order to extend their vascular retention and thus slow 
their tissue clearance. For this reason, the development of biocompatible nanoparticles with 
an external shell of high-spin paramagnetic lanthanide contrast agents like gadolinium chelate 
(seven unpaired electrons), europium fluorescent probes and a superparamagnetic core, 
appears to be an interesting solution for targeted imaging.  

 

Indeed, the lanthanides species are both active in the detection of the target using 
different techniques.  Gd3+ nucleus generates a hypersignal with a T1 weighted sequence, 
even at high magnetic field and, consequently, a much easier interpretation of the MRI 
images. However, these low molecular weight gadolinium chelates accumulate in the 
extracellular space where the “blood brain barrier” breakdown has occurred. They undergo 
rapid diffusion through the interstitial and as well as renal elimination and therefore have the 
limitation of providing a time-dependent image of tumor margins. We show in this 
communication that the chemical grafting of such contrast agent on metal oxide nanoparticles 
can be an alternative route to change their biodistribution, with the desired half-lives, 
inducing their internalization by macrophages, and having a hypersignal with T1 weighted 
sequence (Figure 1). 
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Silica nanoparticles, for example, would be an excellent carrier for the lanthanides 
chelates. Silica is porous enough so that water can freely move in and out of the frame. The 
size of the particles will slow the rotational movement of the chelates and improve the 
relaxation of water. Additionally, the nontoxic silica can be easily derivatized and targeted 
contrast agents can be synthesized. Nanosized silica, with a size between 10 and 20 nm, are 
small enough to pass through the body, and above all are able to enter cells. New sets of Ln3+ 

modified nanoparticles were synthesized and investigated for their MRI contrast agents’ 
properties and for their ability to be internalized and allow the spatial detection of cell 
populations able of phagocytosis such as microglial cells. We will also present preliminary 
results on the introduction of a superparamagnetic oxide in the silica and study the 
interactions in between the shell and the core with respect to the silica shell thickness. 
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