PRELIMINARY STUDIES CONCERNING THE RHEOLOGICAL STABILITY OF CERTAIN PHARMACEUTICAL FORMULATIONS WITH CONTROLLED ACTION IN THE FIELD OF NANOMEDICINE

RODICA SIRBU*, <u>MARIS MARIA*</u>, DAN ARTENIE MARIS*, MINODORA LECA**, ANAMARIA BECHIR*, EMILIA MIHAELA CADAR***

*"Ovidius" University of Constanta, Faculty of Pharmacy, Romania ** University of Bucharest Romania*** 30 - School of Constanta, Romania

Nanomedicine is a field which requires elaborated studies with a view to explaining, understanding and treating multiple diseases widely spread among humans.

The fundamental substance of the gum chorion, by its chemical composition and the polymerization degree of its macro-molecules favour cellular movement and the distribution of biologically active substances. This important characteristic of the fundamental gum substance allows us to use collagen gels mixed with active ingredients in the extracts from marine algae in innovative parodonthal biotherapy.

In order to obtain therapeutic effects at nanostructure level, it is important to know the rheological characteristics of the relevant mixtures of collagen gels and extracts from marine algae selected for use, [1,2,3].

In this survey we have studied mixtures made of non-denatured fibrillar collagen hydrogels where different concentrations of marine algae have been incorporated.

Alga extract	The gel's aspect	No. Samples
Without alga extract	Colourless, clear	SAMPLE 1
	Colourless, clear	SAMPLE 2
	Colourless, barely opalescent	SAMPLE 3
Brown alga	Opalescent, yellowish green	SAMPLE 1
CYSTOSEIRA BARBATA	More opalescent, brownish	SAMPLE 2
	yellow	
Green alga	Clear, barely green	SAMPLE 1
ULVAE LACTUCA	Barely opaque, barely green	SAMPLE 2
Red alga	Barely opalescent, yellowish	SAMPLE 1
CERAMIUM RUBRUM	green	SAMPLE 2
	A degree more opalescent,	
	brownish yellow	

The gels studied are shown in table 1

Table 1. Collagen gels without/with prepared extracts from algae

Gels in table 1 have been subjected to the rheological measurements at $25 \pm 0.1^{\circ}$ C, after at least 15 minutes of thermostatic treatment at the above-mentioned temperature. To this effect, we have used a rotation viscosimeter Haake VT 550 with coaxial cylinders, which is capable of developing a shearing speed, 18 , with values between 0.6 and $3.0.10^{4}$ s⁻¹, of measuring shearing tensions, τ , with values between 1 and 10^{5} Pa and, depending on the sensors system used, of measuring apparent viscosities, η^* , between 1 and 10^{9} mPa.s.

Based on the data obtained for the shearing tensions, we have traced the rheograms – the diagrams for shearing tensions depending on the shearing speed values – from which we have calculated the apparent viscosities as ratios between shearing tension and speed values, which have been figured in relation to the shearing speed values, with a view to levelling dependency.

Extract conte in gel, % (g/1		Viscosity shearing spee	at ed, mPa	zero 1.s	Rheological behaviour
5		2084	4,97		Pseudoplastic
1	0	2813	3,94		Pseudoplastic

Table 2. Characteristics of 0.6 % collagen gels which contain extract ofCYSTOSEIRA BARBATA

Table 3. Characteristics of 0.6 % collagen gels which contain extract of ULVAE LACTUCA

Extract content in gel, % (g/100g gel)	Viscosity at zero shearing speed, mPa.s	Rheological behaviour
5	3248,96	Pseudoplastic
10	2978,05	Pseudoplastic

Table 4. Characteristics of 0.6 % collagen gels which contain extract of CERAMIUM RUBRUM

Extract content in gel, % (g/100g gel)	Viscosity at zero shearing speed, mPa.s	Rheological behaviour/Remarks
5	2386,59	Pseudoplastic
10	3065,66 2656,64	Pseudoplastic, with all points Value without the final point

The rheograms have shown the type of rheological behaviour for each gel. Tables 2, 3 and 4 show the characteristics of 0.6% collagen gels, with the selected marine algae types.

Based on the studies performed, we can reach certain conclusions as to the stability of mixtures in time, as well as certain associations concerning the possibility to transfer active ingredients to the affected tissues.

References

[1] M.-T. Sheu, J.-C. Huang, G.-C. Yeh and H.-O Ho, Biomaterials 22, 1713 (2001).

[2]J. B. Parks, Biomaterials: Principle and Applications, CRC Press, Boca Raton, 2002.

[3 S. Yunoki, T. Suzuki and M. Takai, J. Biosci. Bioeng. 96, 575 (2003).

Poster