STRUCTURAL CHARACTERIZATION AND LUMINESCENT STUDY OF TRANSPARENT NANOSTRUCTURED Eu³⁺ DOPED SOL-GEL DERIVED SiO₂-PbF₂ GLASS-CERAMICS

<u>J. del-Castillo¹</u>, A. C. Yanes¹, J. Méndez-Ramos², J. J. Velázquez² and V. D. Rodríguez²

¹Dpto. Física Básica, Universidad de La Laguna, 38206 La Laguna, Tenerife, SPAIN

²Dpto. Física Fundamental y Experimental, Electrónica y Sistemas, Universidad de La Laguna, 38206 La Laguna, Tenerife, SPAIN

fjvargas@ull.es

Transparent rare-earth-doped glass-ceramics have been widely studied for their promising application in various fields like colour display, optical data storage, sensor, and optical communication [1–2]. Oxyfluoride glass-ceramics have been studied as host materials for active optical ions because they combine the particular optical properties of these ions in fluoride hosts with the elaboration and manipulation advantages, high mechanical and chemical stabilities of oxides glasses [3]. SiO₂ based glasses shows excellent durability and optical quality, although their large phonon energy increases the non radiative decay rate. On the other hand, PbF_2 provides a low phonon energy environment for rare-earth ions that enhances their luminescent efficiency.

Thus, glass-ceramics with an oxyfluoride composition of $89.9SiO_2-10PbF_2-0.1Eu^{3+}$ (mol%), were prepared by hydrolysis of tetraethoxysilane (TEOS) in a similar way as Fujihara et al. [4]. Structural analysis has been carried out by means of X-Ray diffraction confirming the precipitation of cubic β -PbF₂ nanocrystals. Finally, luminescent study has confirmed the partition of Eu³⁺ ions in the PbF₂ nanocrystals.

References:

[1] M. Takahashi, M. Shojiya, R. Kanno, Y. Kawamoto, K. Kadono, T. Ohtsuki, N. Peyghambarian, J. Appl. Phys. 81 (1997) 2940.

[2] S.Q. Man, E.Y.B. Pun, P.S. Chung, Appl. Phys. Lett. 77 (2000) 483. [5] S.Q. Xu, Z.M. Yang, J.J. Zhang, G.N. Wang.

[3] M.J. Dejneka, J. Non-Cryst. Solids 239 (1998) 149.

[4] S. Fujihara, C. Mochizuki and T. Kimura, J. Non Crist. Solids 244, 267 (1999).