

Electroactive β-PVDF Polymer as Fluidic Acoustic Mixer for Lab-on-a-Chip Applications

Pedro Martins**, V.F. Cardoso*, J. Serrado Nunes**, S. Lanceros-Mendez**, J. H. Correia* and

G. Minas*

University of Minho

*Dept. Industrial Electronics, Campus de Azurém, 4800-058 Guimarães

**Dept. Physics, Campus de Gualtar, 4710-057 Braga

Portugal

Motivation and Objectives The Biological Microsystem Advantages

Lab-On-a-Chip Concept

Lab-On-a-Chip Design and Fabrication

Experimental Results

Conclusions

University of Minho Dept. Physics & Industrial Electronics

Motivation

Motivation

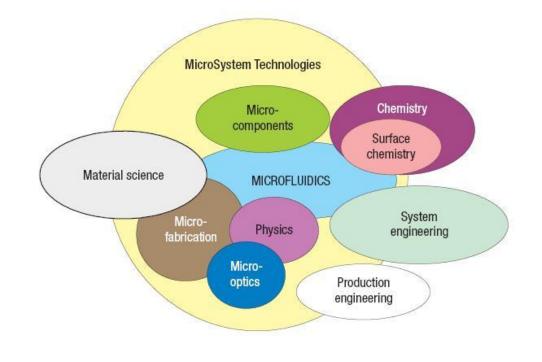
The Biological Microsystem Advantages

Objectives

Lab-On-a-Chip Concept

Lab-On-a-Chip Design and Fabrication

Experimental Results


Conclusions

University of Minho Dept. Physics & Industrial Electronics

Microfluidics:

- Laminar flow regime (no turbulent mixing);
- Surface tension, surface charge become important.

Motivation

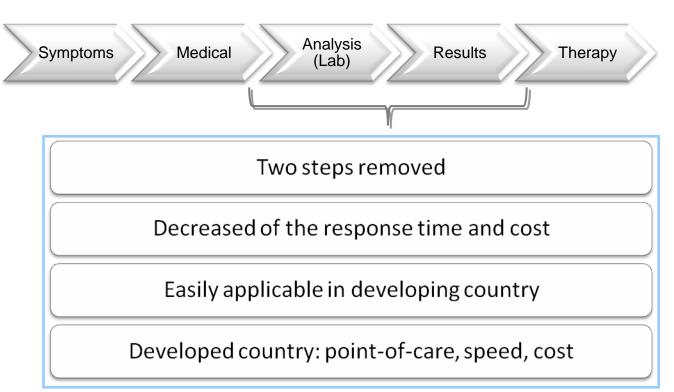
The Biological Microsystem Advantages

Objectives

Lab-On-a-Chip Concept

Lab-On-a-Chip Design and Fabrication

Experimental Results


Conclusions

University of Minho Dept. Physics & Industrial Electronics

Current clinical analysis systems disadvantages:

- Costs;
- Mistake in logistics;
- Delayed results.

De Melo. 2007. World lab-on-chip congress

The Biological Microsystems Advanteges

Small components

- Reduced weight (portable) and size (implantable, integratable);
- Reduced energy consumption.

• Fabrication

- Reduced price (disposable).

Small amount of samples/reagents

- Reduced consumption of (expensive/limited) chemicals;
- Reduced production of (toxic) waste;
- Accurate dosing;

• Complex systems

- Integration of sensors, parallel process, automation.

• Device performance

- Scaling law for new effects and better:
- Increased heat exchange;
- Fast mass transport (rapid analysis).

Motivation

The Biological Microsystem Advantages

Objectives

Lab-On-a-Chip Concept

Lab-On-a-Chip Design and Fabrication

Experimental Results

Conclusions

University of Minho Dept. Physics & Industrial Electronics

Motivation

The Biological Microsystem Advantages

Objectives

Lab-On-a-Chip Concept

Lab-On-a-Chip Design and Fabrication

Experimental Results

Conclusions

University of Minho Dept. Physics & Industrial Electronics

Main Objective:

• Lab-on-a-chip with fluidic acoustic microagitation to quantify the concentration of the molecules in biological fluids.

Lab-On-a-Chip Concept

Why lab-on-chip?

• Miniaturization can speed up the reaction;

The Biological Microsystem Advantages

Objectives

Motivation

Lab-On-a-Chip Concept

Lab-On-a-Chip Design and Fabrication

Experimental Results

Conclusions

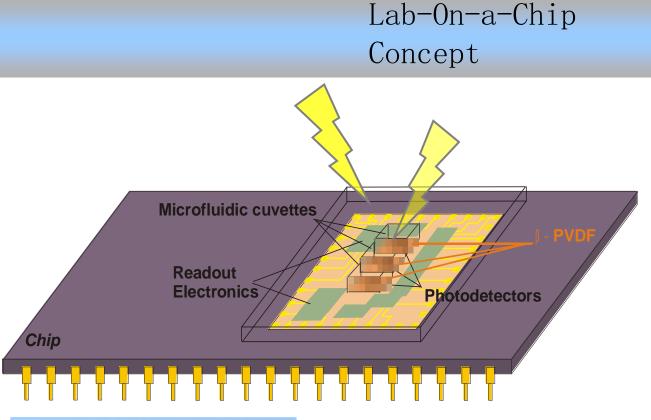
University of Minho Dept. Physics & Industrial Electronics • Hundreds of assays can be performed simultaneously, saving considerable time and effort;

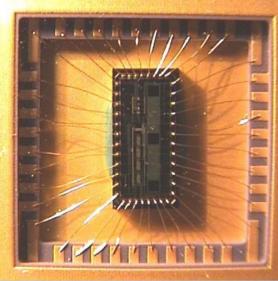
Motivation

The Biological Microsystem Advantages

Objectives

Lab-On-a-Chip Concept


Lab-On-a-Chip Design and Fabrication


Experimental Results

Conclusions

University of Minho Dept. Physics & Industrial Electronics

Lab-On-a-Chip Design and Fabrication

Motivation

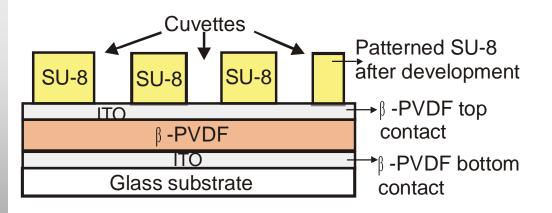
The Biological Microsystem Advantages

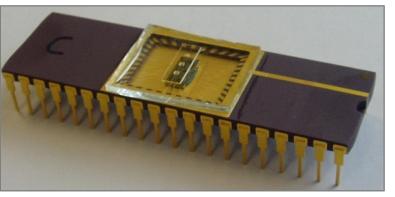
Objectives

Lab-On-a-Chip Concept

Lab-On-a-Chip Design and Fabrication

Experimental Results


Conclusions



University of Minho Dept. Physics & Industrial Electronics

<u>Cuvetes:</u>

- 1) Chemical Reagent;
- 2) Mixture Sample + Reagent;
- 3) Standard Sample.

Lab-On-a-Chip Design and Fabrication

Motivation

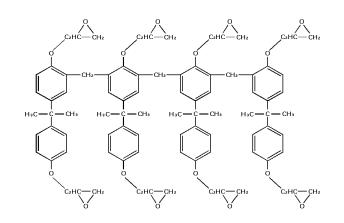
The Biological Microsystem Advantages

Objectives

Lab-On-a-Chip Concept

Lab-On-a-Chip Design and Fabrication

Experimental Results


Conclusions

University of Minho Dept. Physics & Industrial Electronics

Why using SU-8?

- Low Cost;
- Biocompatible;
- High mechanical strength;
- Good adhesion on many different substrate materials;
- UV lithography semiconductor compatible;
- Very low roughness → suitable for optical absorption measurements.

Motivation

The Biological Microsystem Advantages

Objectives

Lab-On-a-Chip Concept

Lab-On-a-Chip Design and Fabrication

Experimental Results

Conclusions

University of Minho Dept. Physics & Industrial Electronics

Major problems with microscale:

- Miniaturization of biological assays is more complex than just transferring reactions to smaller volume;
- Miniaturization in itself does not help to integrate and automate the tests from the biochemical point of view;
- Lack of turbulence;
- Typical Reynolds < 10 \rightarrow Diffusion mixing is dominant.

Lab-On-a-Chip Design and Fabrication

Lab-On-a-Chip Design and Fabrication

Motivation

The Biological Microsystem Advantages

Objectives

Lab-On-a-Chip Concept

Lab-On-a-Chip Design and Fabrication

Experimental Results


Conclusions

University of Minho Dept. Physics & Industrial Electronics

Solution:

• Induce the microfluidic die by a mechanism that accelerates the mixing and the reaction, preferably with ANY external apparatus, internal moving parts or valves.

Lab-On-a-Chip Design and Fabrication

Motivation

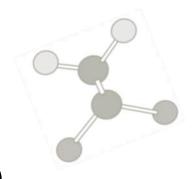
The Biological Microsystem Advantages

Objectives

Lab-On-a-Chip Concept

Lab-On-a-Chip Design and Fabrication

Experimental Results


Conclusions

University of Minho Dept. Physics & Industrial Electronics

<u>PVDF:</u>

Semi crystalline polymer;

- Presents four polymorphs (α , β , γ , δ)
- β-phase is the one which shows better proprieties to be applied in sensors, actuators and transducers, due to its higher piezo-, pyro- and ferroelectrics proprieties;
- Show excellent combination of processability, mechanical stress, chemical agent resistance, lightness, moldability, low cost production and chemically inertness;
- More area, more vibration;
- More thickness, less vibration.

Lab-On-a-Chip Design and Fabrication

Motivation

The Biological Microsystem Advantages

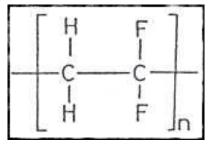
Objectives

Lab-On-a-Chip Concept

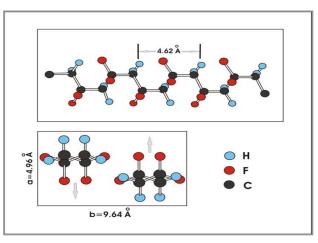
Lab-On-a-Chip Design and Fabrication

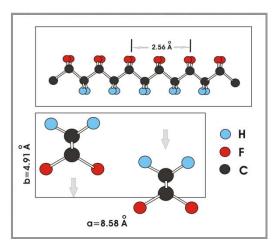
Experimental Results

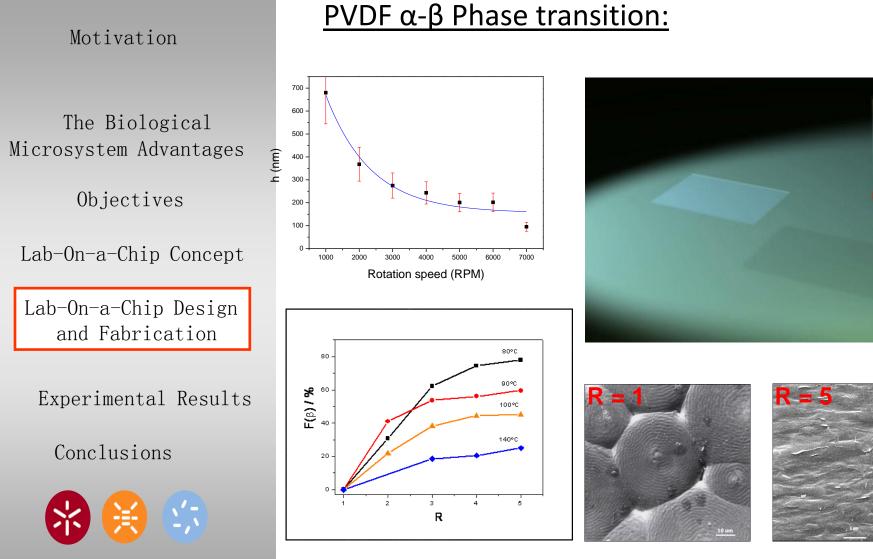
Conclusions



University of Minho Dept. Physics & Industrial Electronics


PVDF:


Monomer


 α -PVDF

β-PVDF

Lab-On-a-Chip Design and Fabrication

University of Minho Dept. Physics & Industrial Electronics

Motivation

The Biological Microsystem Advantages

Objectives

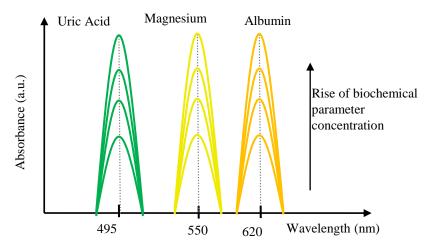
Lab-On-a-Chip Concept

Lab-On-a-Chip Design and Fabrication

Experimental Results

Conclusions

University of Minho Dept. Physics & Industrial Electronics


Evaluation of the mixing process based in the incorporation of piezoelectric β -PVDF polymer:

- Sinusoidal signal at 5V amplitude at various frequencies;
- Standards of urine with 30 mg/dl of uric acid concentration;

Experimental

Results

• Ratio Reagent/Urine \rightarrow 50/1.

Motivation

The Biological Microsystem Advantages

Objectives

Lab-On-a-Chip Concept

Lab-On-a-Chip Design and Fabrication

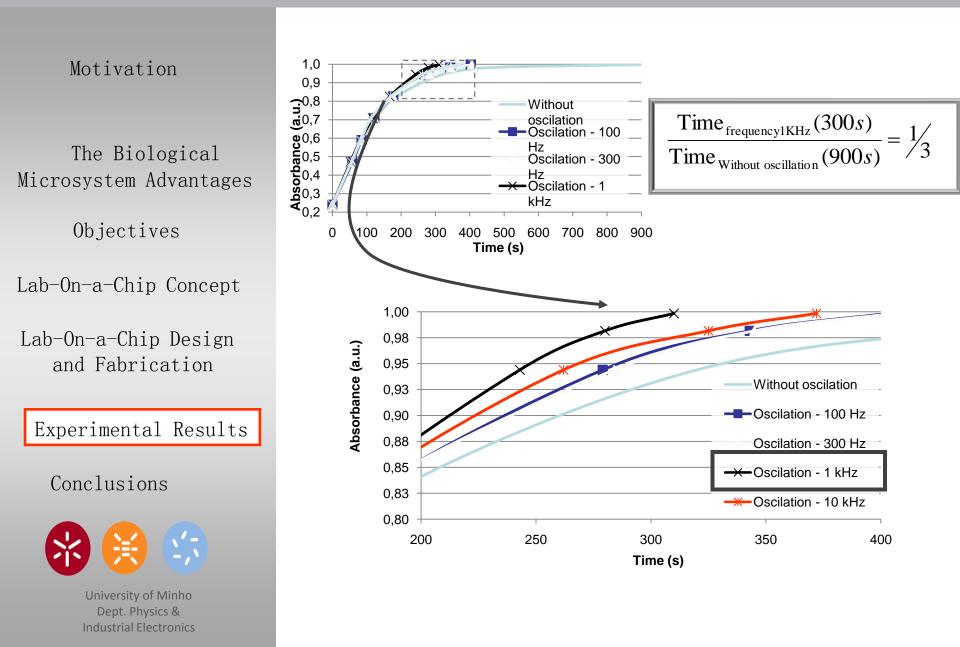
Experimental Results

Conclusions

University of Minho Dept. Physics & Industrial Electronics

Complete and homogeneous mixing :

• Without agitation $\rightarrow \approx 15$ min at room temperature;


Experimental

Results

- With manual agitation + 5 min at room temperature;
- Mechanical agitation with macroscopic equipments.

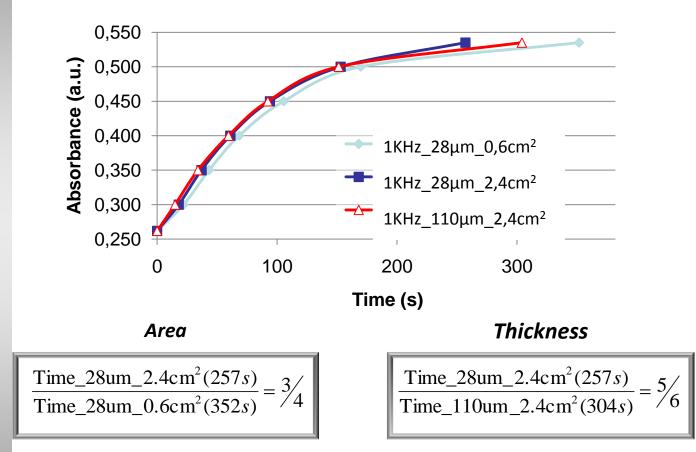
Experimental Results

Experimental Results

Motivation

The Biological Microsystem Advantages

Objectives


Lab-On-a-Chip Concept

Lab-On-a-Chip Design and Fabrication

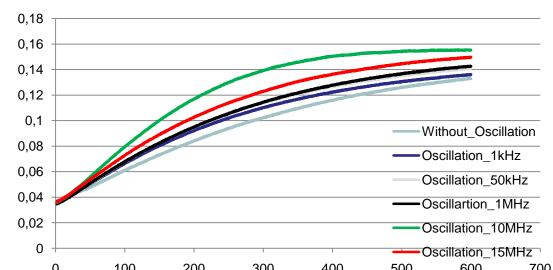
University of Minho Dept. Physics & Industrial Electronics

Influence of the thickness and area of the β-PVDF on the fluids reaction velocity :

Experimental Results

Motivation

The Biological Microsystem Advantages


Lab-On-a-Chip Concept

Lab-On-a-Chip Design and Fabrication

Lab-On-a-Chip Design and Fabrication	0 100 200	300 400 50	00 600 700
		Gain	Fraction
Experimental Results	Without agitation	0	
Conclusions	1kHz	12.90%	1/8
	50kHz	22.35%	2/9
😵 😫 😴	1MHz	24.90%	1/4
	10MHz	56.25%	4/7

Objectives

University of Minho Dept. Physics & **Industrial Electronics**

Frequency tests :

Motivation

The Biological Microsystem Advantages

Objectives

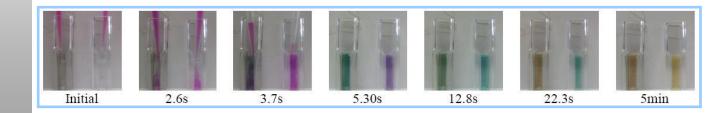
Lab-On-a-Chip Concept

Lab-On-a-Chip Design and Fabrication

Experimental Results

Conclusions

University of Minho Dept. Physics & Industrial Electronics


<u>Qualitatively evaluation of</u> <u>the mixing process:</u>

 Reaction between: Solution of Sodium Hydroxide, Sucrose, Potassium Permanganate.

Experimental Results

- Sinusoidal signal with 10V amplitude and 15MHz frequency on β -PVDF transducer ;
- Reaction time improved in 93%.

Conclusions

Motivation

The Biological Microsystem Advantages

Objectives

Lab-On-a-Chip Concept

Lab-On-a-Chip Design and Fabrication

Experimental Results

Conclusions

University of Minho Dept. Physics & Industrial Electronics

Conclusions:

• The incorporation of fluidic acoustic microagitation in a labon-a-chip is advantageous when two or more fluids need to be mixed;

- Experimental show that, at 1 KHz, the mixing time is reduces to 1/3 of the time needed without agitation;
- Experimental results show that the thickness and the area of the polymer affects the mixing time of fluids;
- Acoustic microagitation becomes a preferred technology for effective mixing and allows the decreasing of the device sizes.

Support:

 Portuguese Foundation for Science and Technology (grants
PTDC/BIO/70017/2006 and POCI/CTM/59425/2004);

R&D Algoritmi Centre
, from University of
Minho, Portugal.

University of Minho Dept. Physics & Industrial Electronics

Thanks for your Attention!

More information in:

http://microlab.dei.uminho.pt/labchip/labchip.htm

pmartins@fisica.uminho.pt

