Nanogap fabrication based on strained III-V beams

NanoSpain 2008 – Nanolberian Conference Nanofabrication Parallel Session Braga - Portugal

April 15, 2008

Iván Fernández-Martínez

Instituto de Microelectrónica de Madrid Centro Nacional de Microelectrónica CSIC (Spain)

Nanogap fabrication based on strained III-V beams

Outline of the talk

- Introduction.

- Examples of Nanogap fabrication methods.

- Description of our new strategy : strained single - crystal beams.

- Summary.

Introduction

Nanogap definition:

'Separation between two contacts in the nanometer range'.

Interesting for :

<u>Molecular Electronics</u>: In particular for transport measurements in Single Molecule Junctions or nanoparticles.

Introduction

Problems:

Limited resolution the standard micro-fabrication process (EBL, FIB...) ~15-20nm.

The Au contacts are cut using the smaller beam size (1 pA, 7 nm)

It is neccesary to explore alternative fabrication methods.

Fabrication methods : Examples

 $\frac{\text{Electromigration}}{(\text{breaking metallic wires passing through a current 10^7 A/cm^{-2})}$

SPM techniques

(precise control of the tip-surface distance) Single atom conduction

Fabrication methods: Mechanically Controlable Break Junction.

III-V single crystal strained epitaxial heterostructures

Single crystal heterostructures containing GaAs, AlGaAs and GaP.

Ability of ALMBE to grow heterostructures with large lattice mismatch GaAs and GaP ($\Delta a = 3.6\%$) with atomic precision.

GaP on GaAs: mismatch accomodated by strain

Single GaP ML between GaAs

2 GaP ML embedded on GaAs: mismatch accomodated by strain

Capability for obtaining flat and abrupt interfaces F. Briones et al., Appl. Phys. A **49** 729 (1989). A Mazuelas et al. J. Phys. D **26** A167 (1993).

Grown layer by ALMBE: GaAs/GaP

10 single GaP ML's symmetrically distributed in 200nm thick layer.

Each GaP layer is separated by 64 GaAs ML's (no misfit dislocation)

GaP 'stressors' of atomic thickness are introduced

ALMBE grown GaAs/GaP/AlGaAs/GaAs heterostructure

I μ m thick AlGaAs layer that acts as sacrificial layer. HF Etching Selectivity AlGaAs/GaAs = 10⁷:1for microfabrication of structures

Strain release during AlGaAs layer etching

Contraction length can be calculated by strain sharing model between GaP and GaAs layers. $M=biaxial\ moduli$

$$d = \frac{L}{a} \cdot \varepsilon_{GaAs} = L \cdot \frac{\Delta a}{a} \cdot \frac{1}{1 + \frac{n_{GaAs}}{n_{GaP}}} \cdot \frac{M_{GaAs}}{M_{GaP}}$$
$$L = 10 \ \mu m \rightarrow d = 5nm$$

n=*number* of *MLs*

 $\frac{n_{GaAs}}{2} = 70$

 $\frac{\Delta a}{2} = 3.6\%$

*n*_{GaP}

a

Strain-release-cleavage

Nanoconstruction breaks by cleavage of GaAs/GaP strained layer during AlGaAs etching. Atomically flat cleavage planes.

How to turn this contraction into a nanogap?

EXPERIMENTAL:

Beams with a narrow neck (nanoconstruction) are fabricated by EBL + wet etching of the GaAs/GaP layer.

Fabricated device

Top view

Colored SEM image of the etched device.

Fabricated device

Side view

SEM tilted image of the etched device.

Two atomically flat surfaces separated a few nanometers.

Multiple nanogap fabrication: as small as 5nm!

4 5 6 7 8 9 10 Beam length (μm)

l:*d* ~ 5nm

III:*d* ~ 50nm

IV:*d* ~ 70nm

0-

3

4

Parallel nanogap fabrication using III-V epitaxial strained beams

Summary:

- A novel parallel nanogap fabrication method using strained beams is developed.

- The process is highly reproducible and allows precise gap size control. Full-wafer compatible technology

- Cantilever can be electrostatically actuated.

Accepted in Nanotechnology. I. Fernández-Martínez et al.

People involved

- Y. González (MBE group at IMM).
- F. Briones.
- J. L. Costa-Krämer.
- <u>Help with microfabrication techniques</u>
 - J. V. Anguita F. Torres
- <u>MEC for a FPI grant and NANOCIR project</u>

