Single molecule fluorescence decay rate statistics in disordered media

Luis Froufe

Instituto de Ciencia de Materiales de Madrid, CSIC Laboratoire Photons et Matière, ESPCI, CNRS

> J.J. Sáenz Universidad autónoma de Madrid

Rémi Carminati Laboratoire Photons et Matière, ESPCI, CNRS

Applications of fluorescence: Imaging

Molecular level
 Different modes of operation

 Intensity signal
 Fluorescence lifetime

Cell imaging

Combustion

Whole organ imaging

Lifetime depends on the environment

Emission in front of a mirror

Drexhage (1966): fluorescence lifetime of Europium ions depends on source position relative to a silver mirror (*I=612 nm*)

Lifetime depends on the environment

Emission in front of a nanoparticle

Carminati, Henkel, Greffet, Vigoureux, Opt. Commun. 261, 368 (2006)

Lifetime depends on the environment

What happens when the environment is disordered?

Fluorescence: spontaneous decay

 Γ = decay rate

Decay rates

Total decay rate

$$\Gamma = \frac{2p^2}{\hbar} \frac{\omega^3}{c^3 \varepsilon_0} \Im \left\{ \hat{\mathbf{u}} \mathbb{G} \left(\mathbf{r}, \mathbf{r}, \omega \right) \hat{\mathbf{u}} \right\}$$

The emitted light can be either **radiated** out of the system or **absorbed**

Power (classical)
$$P = P_R + P_{NR}$$
Decay rate (quantum) $\Gamma = \Gamma_R + \Gamma_{NR}$

In this talk

Disordered clusters of nanoparticles: statistical properties

Geometry of the system
Statistics of the emitter
Numerical results
An analytical approach:

Averaged values
Fluctuations

Geometry of the system: disordered spherical clusters

There is a **minimum distance** between particles —

> **uncorrelated** positions if low filling fraction (f)

The emitter

Orientation dynamics SLOWER than medium dynamics:

 Γ taken along one direction

Emission rates in disordered systems: numerical results

- Broad distributions.
- Strong dependence on absorption level.
- Strong dependence on orientation statistics.

Emission rates in disordered systems: numerical results

Analytical model

•Single scattering •Uncorrelated disorder

$$\left\langle \Gamma^{(N)} - \Gamma_0 \right\rangle = N \times \left\langle \Gamma^{(1)} - \Gamma_0 \right\rangle$$

$$\sigma^2\left(\Gamma^{(N)}\right) = N\sigma^2\left(\Gamma^{(1)}\right)$$

Valid for clusters of nanoparticles

- •Small polarizability
- Low filling fraction

Radiative contribution

$$\left\langle \frac{\Gamma^{R} - \Gamma_{0}}{\Gamma_{0}} \right\rangle \simeq \frac{11}{5} f \Re \left(\beta\right) \left(kR\right)^{2} + 2f \left|\beta\right|^{2} \left(\frac{a}{R_{0}}\right)^{3}$$

•First order term in powers of filling fraction f (single scattering)

·Almost independent on absorption level

Non-Radiative contribution

$$\left\langle \frac{\Gamma^{NR}}{\Gamma_0} \right\rangle \simeq 9f \frac{\Im(\epsilon)}{\left|\epsilon+2\right|^2} \frac{1}{\left(kR_0\right)^3}$$

Non-Radiative contribution

$$\left\langle \frac{\Gamma^{NR}}{\Gamma_0} \right\rangle \simeq 9f \frac{\Im(\epsilon)}{\left|\epsilon+2\right|^2} \frac{1}{\left(kR_0\right)^3}$$

Linear with $Im(\varepsilon)$

Non-Radiative contribution

$$\left\langle \frac{\Gamma^{NR}}{\Gamma_0} \right\rangle \simeq 9f \frac{\Im(\epsilon)}{|\epsilon+2|^2} \frac{1}{(kR_0)^3}$$

Strong local field effects

Linear with $Im(\varepsilon)$

can be explicitly obtained within this model

can be explicitly obtained within this model

can be explicitly obtained within this model

can be explicitly obtained within this model

 $\sigma\left(\Gamma-\Gamma_{0}\right)/\left\langle\Gamma-\Gamma_{0}\right\rangle\simeq\sigma\left(\Gamma^{NR}\right)/\left\langle\Gamma^{NR}\right\rangle\simeq\left(a/R_{0}\right)^{3/2}\sqrt{3/f}$

local field effects

Fixed dipole orientation: statistical distributions

Fixed dipole orientation: non radiative Γ also linear with Im(ε)

Fixed dipole orientation: Different fluctuations, different behavior

Conclusions

Clusters of small particles

- Simple analytical expressions for small clusters
- Role of near-field scattering.
- *Role Non-Radiative coupling.
- Strong dependence on the statistics of the orientation of the emitter

 Strong deppendence on the miscroscopic (subwave-length) environment of the emitter

More Info: •L. S. Froufe-Pérez, R. Carminati, and J. J. Sáenz Phys. Rev. A 76, 013835 (2007) •L. S. Froufe-Pérez and R. Carminati Phys. Stat. Sol. a, in press (2008)

Additional information

Comparison with effective continuous model

Using an **effective dielectric constant**, we compute the decay rate from the Green function for a spherical crust (spherical cavity inside a sphere)

 $\epsilon_{eff} = 1 + \delta \epsilon$ Maxwell-Garnett: $\delta \epsilon = n \alpha_s$ $\delta \epsilon \simeq 3f \beta \left(1 + \frac{2}{3} i (ka)^3 \beta^* \right)$

See for instance P. Mallet, C.A. Guérin and A. Sentenac, PRB 72, 014205 (2005)

Comparison with effective continuous model

Total decay rate

We obtain the same expression as the one given by the statistical model.

Single Scattering statistical model Instead of solving the exact problem, we can use a single scattering approach: The field exciting any dipole only comes from the source.

- Small polarizability.
- •Low filling fraction.

Close to the resonance, the polarizability is large. The single scattering approach fails

valid for clusters of nanoparticles

Averaged Quantum Yield

Even in the absorption regime, averaged quantum yield is high enough to obtain a measurable signal

One approach to the problem: Coupled dipole model

The exciting field of each dipole is created by the source and the remaining dipoles. **Coupled dipole system...** Once solved: The Green tensor of the system is obtained **exactly**