Mechanical detection of the vibrations of Carbon Nanotube and Graphene Resonators

D. Garcia-Sanchez^{1,2} A. Bachtold^{1,2}

¹ICN Barcelona, Campus UAB Bellaterra, Spain

²CNM-CSIC Barcelona, Campus UAB Bellaterra, Spain

NanoSpain 15/04/2008

Breakthrough Electrical detection of mechanical vibrations of nanotube resonators (V. Sazonova et al. Nature 431, 284 (2004))

Problem Resonances cannot be assigned to the eigenmodes

SFM Technique

- Tested devices: MWNT, SWNT and Graphene Resonators
- Oscillating electrostatic force due to V_{RF}

$$F_{RF} = \frac{\partial C}{\partial z} (V_{DC} - \phi) V_{RF}$$

• V_{RF} is modulated at f_{mod} , $(1 - \cos(2\pi f_{mod}t))\cos(2\pi f_{RF}t)$

SFM Technique

- Tested devices: MWNT, SWNT and Graphene Resonators
- Oscillating electrostatic force due to V_{RF}

$$F_{RF} = \frac{\partial C}{\partial z} (V_{DC} - \phi) V_{RF}$$

• V_{RF} is modulated at f_{mod} , $(1 - \cos(2\pi f_{mod}t))\cos(2\pi f_{RF}t)$

- Detection of resonance at 3.12 GHz
- The highest reported resonance frequency of a double clamped resonator

Imaging Mechanical Eigenmodes

- Topography and first 3 eigenmodes vibration images for a 770nm long MWNT resonator
- Measured eigenmode shape in agreement with the model
- Estimated displacement of 0.2nm

Imaging Mechanical Eigenmodes

x (nm)

x (nm)

300

- Topography and first 3 eigenmodes vibration images for a 770nm long MWNT resonator
- Measured eigenmode shape in agreement with the model
- Estimated displacement of 0.2nm

		Theoretical			Measured		
L(nm)	d(nm)	f ₁ ^t (MHz)	f ₁ ^m (MHz)	f ₂ ^m (MHz)	f₃ ^m (MHz)	f_2^{m}/f_1^{m}	f ₃ ^m /f ₁ ^m
770	8.4	147	154	475	1078	3,1	7,0
1370	10	55	51	165	291	3,2	5,7
650	10	246	264	935	-	3,5	-
785	16	270	276	-	-	-	-
195	10	2734	2850	-	-	-	-
265	20	2961	3124	-	-	-	-

• Good agreement with the elastic beam theory:

$$f_n = \frac{22.73 \,\beta_n}{8\pi} \frac{d}{L^2} \sqrt{\frac{E}{\rho}}$$
 with $\beta_1 = 1$, $\beta_2 = 2.76$, $\beta_3 = 5.41$

		Theoretical	Measured		
L(nm)	d(nm)	f ₁ ^t (MHz)	$f_1^{m}(MHz)$	$f_2^{m}(MHz)$	
640	2,0	92,7	30,0	57,0	
465	1,3	114,1	260,0	-	
572	4,0	232,0	290,0	-	
193	1,5	764,3	573,0	-	

• Bad agreement with the elastic beam theory due to stress or slack

- The slack is similar to a mass attached to a point through a massless rod
- Reduction of *f_{res}* consistent with theoretical analysis (H. Ustunel *et al.* Nano Lett. *5*, 523 (2005))

- The slack is similar to a mass attached to a point through a massless rod
- Reduction of *f_{res}* consistent with theoretical analysis (H. Ustunel *et al.* Nano Lett. *5*, 523 (2005))

- Beam with t = 11nm and $l = 2.8, \mu$ m
- *f*₀ = 31 MHz
- FEM and elastic beam theory predictions in agreement with measurements

D. Garcia-Sanchez et al. Nano Lett. accepted for publication

• Beam with t = 11nm and $l = 2.8, \mu m$

ICN⁹

Institut Català de Nanotecnologia

- f₀ = 31 MHz
- FEM and elastic beam theory predictions in agreement with measurements

D. Garcia-Sanchez et al. Nano Lett. accepted for publication

Graphene resonator with local buckling

Local buckling of 37 nm

• Exotic eigenmodes: "edge modes"

- FEM simulations in excellent agreement with measurements
- Very high maximum stress: 1.5 GPa
 - Steel breaks at 690 MPa, MWNTs between 11 and 63 GPa (M.F. Yu *et al.* Science 287, 637 (2000)), and SWNTs between 13 and 52 GPa (M.F. Yu *et al.* 84, 5552 (2000)).

Graphene resonator with local buckling

- Local buckling of 37 nm
- Exotic eigenmodes: "edge modes"
- FEM simulations in excellent agreement with measurements
- Very high maximum stress: 1.5 GPa
 - Steel breaks at 690 MPa, MWNTs between 11 and 63 GPa (M.F. Yu *et al.* Science **287**, 637 (2000)), and SWNTs between 13 and 52 GPa (M.F. Yu *et al.* **84**, 5552 (2000)).

- The SFM technique can
 - detect very high frequency resonances
 - image the eigenmodes
 - can be applied to any nano-mechanical resonator
- MWNT behave as double clamped beams
- SWNT do not behave as double clamped beams
- Graphene resonators may have edge eigenmodes due to the stress introduce during fabrication

ICN

Adrian Bachtold Benjamin Lassagne Amelia Barreiro Joel Moser Maria Jose Esplandiu Mariusz Zdrojek

CNM

Alvaro San Paulo Francesc Perez

UPC

Albert Aguasca

Cornell

Arend van der Zande Paul McEuen