

Site-selective chemical control of nanotube's conductivity

Juan María García Lastra Kristian Sommer Thygesen Ángel Rubio

Universidad del País Vasco Euskal Herriko Unibertsitatea Dpto. Fisica de Materiales, Facultad de Quimicas, Universidad del Pais Vasco, E-20018 San Sebastian. SPAIN Ph:+34-943018292, arubio@ehu.es, scpgalaj@ehu.es http://nano-bio.ehu.es/

ETSE European Theoretical Spectroscopy Facility

- 1. Motivation
- 2. Introduction
- 3. Calculation Results
- 4. A simple model to explain the results5. Outlook

SANES

Integrated Self-Adjusting NanoElectronic Sensors

- ➢Main goal: Develop a new integrated self-adjusting nanoelectronic gas sensor based on functionalized carbon nanotubes as active elements.
- ➤Change in conductivity of nanotubes in presence of different gases.
- ≻Sensitivity and selectivity.
- Members: University of Szeged, Rensselaer Polytechnic Institute, University of Oulu, Max-Planck Institute, Laserprobe LP Oy and University of Pais-Vasco.
- ≻Our work: Theoretical models.

Introduction

Introduction

K'

There are two available channels to transport electrons

nano-bio spectroscopy group

Introduction

From Graphene to CNT

Zigzag

(n,0)

Metallic only if n=3p

How does the absorption of a molecule affect to the transport properties of a CNT?

- 1. Geometry optimization (DFT calculations) → Expensive part
- 2. Transport calculations: Non-equilibrium Green's function formalism

NEGF calculations: A naïf view

Non-equilibrium Green's function formalism

Pure systems

$$G(E) = G_0 N_{\perp}(E)$$

Doped systems

Physisorbed molecules

CH₄

eman ta zabel zazu

Physisorbed molecules

CO 20 Pure Transmission (G₀) Doped 15 10 0 -2 0 -4 2 -6

E-E_F (eV)

Physisorbed molecules

H₂O

Chemisorbed molecules

eman ta zabal zazu

nano-bio spectroscopy group

Chemisorbed molecules

Channel 1

Transmission direction

3

Transmission 5

Chemisorbed molecules

Channel 2

 0^{L}_{-2}

Chemisorbing two molecules

Chemisorbing two molecules

nano-bio spectroscopy group

A-A (0-10) pairs

A-B (0-11) pairs

- 1) Physisorbed molecules do not affect the conductivity close to Fermi level
- 2) Chemisorbed molecules: One channel is cancelled
- 3) Universal behaviour for chemisorbed molecules
- 4) Two molecules: Transmission depends strongly on the relative position of the molecules

Tight-Binding Model

A simple model to explain the results

	Eigenvalue	K ₊ >	K′_>	K' ₊ >	K_>	ε ₀ >
1)	0	0	1	0	-1	0
2)	0	-1	0	1	0	0
3)	0	-2	1	0	1	0
4)	E+	t/ E+	t/ E+	t/ E+	t/ E+	1
5)	E-	t/ E-	t/ E-	t/ E-	t/ E-	1

$$E^{\pm} = \frac{\varepsilon_0 \pm \sqrt{\varepsilon_0^2 + 16t^2}}{2}$$

One molecule

A simple model to explain the results

Two molecules

$$H_{1} = \begin{pmatrix} \mathsf{K}_{+} \mathsf{F} & |\mathsf{K}_{-} \mathsf{F} & |\mathsf{K}_{-} \mathsf{F} \\ 0 & 0 & 0 & 0 & t & t \cdot f_{1} \\ 0 & 0 & 0 & 0 & t & t \cdot f_{2} \\ 0 & 0 & 0 & 0 & t & t \cdot f_{3} \\ 0 & 0 & 0 & 0 & t & t \cdot f_{4} \\ t & t & t & t & t & \varepsilon_{0} & 0 \\ t \cdot f_{1}^{*} & t \cdot f_{2}^{*} & t \cdot f_{3}^{*} & t \cdot f_{4}^{*} & 0 & \varepsilon_{0} \end{pmatrix}$$

$$f_1 = e^{-i\frac{2\pi}{3}(n-m)} \qquad f_2 = e^{i\frac{2\pi}{3}(n-m)} \qquad f_3 = s \cdot e^{-i\frac{2\pi}{3}(n-m+3m)} \qquad f_4 = s \cdot e^{i\frac{2\pi}{3}(n-m+3n)}$$

A simple model to explain the results

Two molecules

$$H_{2} = \begin{pmatrix} \mathsf{K}_{+} \mathsf{F} & \mathsf{K}_{-} \mathsf{F} & \mathsf{K}_{+} \mathsf{F} & \mathsf{K}_{-} \mathsf{F} \\ 0 & 0 & 0 & 0 & t & t \cdot f_{1} \\ 0 & 0 & 0 & 0 & t & t \cdot f_{2} \\ 0 & 0 & 0 & 0 & t & t \cdot f_{3} \\ 0 & 0 & 0 & 0 & t & t \cdot f_{4} \\ t & t & t & t & t & \varepsilon_{0} & 0 \\ t \cdot f_{1}^{*} & t \cdot f_{2}^{*} & t \cdot f_{3}^{*} & t \cdot f_{4}^{*} & 0 & \varepsilon_{0} \end{pmatrix}$$

$$f_1 = e^{-i\frac{2\pi}{3}(n-m)} \qquad f_2 = e^{i\frac{2\pi}{3}(n-m)} \qquad f_3 = s \cdot e^{-i\frac{2\pi}{3}(n-m+3m)} \qquad f_4 = s \cdot e^{i\frac{2\pi}{3}(n-m+3n)}$$

1. When the second impurity is at an A site such that the relative distance R fulfils the condition:

$$R = n \cdot \vec{a}_1 + m \cdot \vec{a}_2, n - m = 3p, p being an integer$$

all the f parameters are 1 and the corresponding eigenvectors of H_2 have the same form as those of H_1

- 2. If the second impurity is placed at an A site, but does not satisfy the condition all the eigenvectors are non-propagating.
- 3. If the second impurity is placed at a B site the form of the eigenvectors depend strongly on the actual adsorption site.

One and two molecules adsorbed is not enough for SANES project, but...

We have found a nice property that could be useful:

Nanoswitches

≻Memories

≻Self-Assembly

Thanks for your attention!

