

- -The Concept of Overlap Polarizability (OP)
- -Testing the OP Concept
- Extension to the Solid State: theoretical model

2

- The Alkali Halides, α-Al₂O₃ and α-SiO₂ Cases
- Concluding Remarks

Chemical Bond	λ ₀	f	λ	λ	σ	λ _p
LiF	596	0.03	199	298	0.5	391
LiI	1408	0.10	469	704	7.1	328
NaF	713	0.02	238	357	0.4	368
NaI	1558	0.08	519	777	5.5	342
KF	850	0.01	283	425	0.2	314
KI	1714	0.06	571	856	3.8	368
SrO	1537	0.01	513	770	0.2	297
SrTe	1756	0.12	585	877	3.3	302
HF	456	0.06	152	228	5.1	-
HI	833	0.21	278	417	13.3	-
HF	456 833 λ i	0.06 0.21 n Å and	¹⁵² 278 d σ in 1	²²⁸ ⁴¹⁷ 0-26 cn	5.1 13.3 N ²	

	$\lambda_{_{0}}(\mathrm{\acute{A}})$	f	(10^{-26} cm^2)	λ _i (Å)	$\lambda_{s}(\text{\AA})$	Ep(eV)	σ_{Loss} (10 ⁻²³ cm ²)	a
LiF	958	0.014	1.06	125	144	12.8	0.30	0.1
NaF	1011	0.012	0.22	417	711	12.2	0.27	0.1
KF	1108	0.011	0.20	417	670	11.0	0.25	0.2
LiCl	1551	0.034	6.70	125	136	8.0	1.6	0.5
NaCl	1559	0.040	3.00	417	570	8.0	2.0	0.6
KCI	1630	0.037	2.40	417	561	7.6	2.0	0.7
LiBr	1657	0.033	3.30	417	558	7.4	1.6	0.6
NaBr	1692	0.033	2.80	417	554	7.3	1.7	0.7
KBr	1691	0.036	2.10	417	554	7.3	2.0	0.7
$Al_2O_3 - d1$	1065	0.211	0.0036	417	686.7	11.6	64.41	2.5
$Al_2O_3 - d2$	937.5	0.17	0.013	417	752.7	13.2	30.65	1.3
$SiO_2 - d1$	1753	2.80	1.64	417	548	7.0	3178	15.7
$SiO_2 - d2$	1371	5.58	1.41	417	600	9.0	7676	8.2

