Self-assembly of polychlorotriphenylmethyl

organic radicals on surfaces

Marta Mas-Torrent

NanoSpain 2008, Braga

INTRODUCTION

Polychlorotriphenylmetyl (PTMs) radicals.

- Highly persistent
- Easily functionalized
- Open-shell structures (magnetism)

CI

С

C

Clu

CI^{,,,}

Electroactive

• Fluorescence 600nm (red)

C

C

Ē

∎C |

A switch or memory device mechanism → <u>Bistable systems</u>

A molecule having two stable and fully reversible states exhibiting different optical, magnetic or electrical properties

INTRODUCTION

UV/Vis Spectra of the PTM Radical and Anion in a Chronoamperometric Experiment

INTRODUCTION

Redox - Switching of the UV/Vis - Response between the PTM -Radical and the PTM - Anion

PTM RADICALS ARE GOOD BUILDING BLOCKS FOR PREPARING MULTIFUNCTIONAL MOLECULAR SWITCHES

Functionalise surfaces with PTM radicals for memory devices/switches

Functionaliztion of different surfaces

PREPARATION OF PTM SELF ASSEMBLED MONOLAYERS (SAMs) ON SILICON OXIDE AND QUARTZ SURFACES

N. Crivillers, et al. Angew. Chem. Int. Ed. 2007, 46, 2215

PTM SAM based on Covalent Bonding

Contact angle, Ellypsometry, X-Ray photoelectron spectroscopy (XPS)

SAM	θ _{adv.} (°)	θ _{rec} .(°)	Ell.thick.(nm)	CI/N (XPS)
NH ₂	57.3±1.2	22.7±3.7	0.8	-
ΡΤΜ	84.0±0.2	44.0±2.0	1.3	1.6 1 PTM / 4.4 NH ₂

Optical Characterisation and EPR of the SAM (on quartz and glass)

PTM radical generated in situ on the surface

Possible to carry out chemical reactions on the PTM SAMs

Chemical Switch with Optical and Magnetic Response

One step further...

Patterning of the surface: Fluorescent, magnetic and redox active patterned glass surface.

MICROCONTACT PRINTING:

1) Functionalization of a glass slide with the amino-terminated monolayer.

2) The stamp is dipped in the ink solution (PTM solution).

3) The stamp is brought in contact with the amino monolayer and kept for some minutes before careful removal.

Both strategies (covalent and non-covalent) are good to obtain a patterned surface

Functionaliztion of different surfaces

PREPARATION OF PTM SAMs ON GOLD

Electrochemical in situ characterization

PREPARATION OF PTM SAMs ON GOLD: Direct Anchoring

PREPARATION OF PTM SAMs ON GOLD. Direct anchoring

Functionaliztion of different surfaces

Acknowledgements

Núria Crivillers

Dr. Sandrine Perruchas Dr. Nans Roques Dr. José Vidal-Gancedo Prof. Concepció Rovira Prof. Jaume Veciana

Dr. Lourdes Basabe-Desmonts Dr. Bart-Jan Ravoo Dr. Mercedes Crego-Calama Prof. David Reinhoudt

Dr. An ver Heyen Dr. Shuhei Furukawa Dr. Steven DeFeyter

Andrea Minoia **Dr. Mathieu Linares** Prof. Roberto Lazzaroni

€€€

DGI- Spain, CIRIT- Catalunya EU: ESF Network SONS, IP NAIMO, Cegmae **Magmanet Network**

