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Understanding of the thermoelectric effect poses critical challenges for the theorists, since it entails a 
comprehensive description of both electron and thermal transport, phenomena usually associated with 
diverse mechanisms, and more importantly with different energy scales. In the last few years, tremendous 
progress has been made in building models to describe these transport effects, starting from either the 
Boltzmann equation or the Landauer formalism [1]. In this talk, I will present some of the theoretical 
advancements made by the Spanish consortium nanoTherm [2], comparing them with the actual 
international outlook, and in some case bridging the gap with experiments. An overlook of the experimental 
progress is presented in the talk of Dr. O. Caballero and Dr. M. Martinez.  

 
I will focus my attention to two of the most recent developments, namely an effective description of phonon 
thermal transport [3] that is able to describe the confinement effect in nanowires of decreasing diameter, 
and a theory for the Seebeck coefficient where we take into account the effect of the electron exchange and 
correlation energy [4]. 
Finally, I will take the opportunity to introduce a novel “Red Tematica” on the thermoelectric theory. 

[1] D’Agosta, R. Phys. Chem. Chem. Phys. 15, 1758 (2013). 
[2] Caballero-Calero, O. & D’Agosta, R. ECS J. Solid State Sci. Technol. 6, N3065–N3079 (2017). 
[3] De Tomas, C., Cantarero, A., Lopeandia, A. F. & Alvarez, F. X. J. Appl. Phys. 115, 164314 (2014). 
[4] Yang, K., Perfetto, E., Kurth, S., Stefanucci, G. & D’Agosta, R. Phys. Rev. B 94, 81410(R) (2016).	

RAPID COMMUNICATIONS

YANG, PERFETTO, KURTH, STEFANUCCI, AND D’AGOSTA PHYSICAL REVIEW B 94, 081410(R) (2016)

As(ω) = ℓ(ω − v − vHxc), with ℓ(ω) = γ /(ω2 + γ 2/4) being
a Lorentzian of width determined by the dot-lead tunneling
rate γ /2. The Hartree-xc (Hxc) potential vHxc depends on N
and T . Therefore, at self-consistency As depends implicitly
(through N ) on µ and both implicitly and explicitly on T . By
calculating the required density derivatives and taking into ac-
count that dvHxc
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= ( ∂vHxc

∂N
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N

, we obtain the exact
relation

S = Ss +
(

∂vHxc

∂T

)

N

. (5)

Here Ss is the KS Seebeck coefficient obtained from Eq. (1) by
replacing A(ω) with As(ω), and it is precisely the coefficient
predicted by the LB-DFT approach. We further observe that
for the derivation of Eq. (5) it is not necessary that As is a
Lorentzian; the only requirement is that As is a function of
(ω − v − vHxc).

Equation (5), the central result of this Rapid Communica-
tion, provides a rigorous route to cure LB-DFT through the
inclusion of the xc correction ∂vHxc/∂T while still remaining
in a pure DFT framework. As we shall see, Eq. (5) also suggests
how to correct Ss in larger systems.

At temperatures T ≫ γ , but still T ≪ U where U is the
onsite repulsion, the CB phenomenon leaves clear fingerprints
on the Seebeck coefficient. Nevertheless, these are only
partially captured by Ss , even when the exact vHxc is used
(see below). The Anderson model is particularly instructive
since it allows us to disentangle the coordinated actions of the
CB effect on Ss and of the xc correction in reproducing the
interacting S.

In the following we assume that γ is the smallest energy
scale and we approximate vHxc by the exact Hxc potential of
the isolated (γ = 0) impurity [26,27],

vHxc[N ] ≈ v
imp
Hxc[N ] = U

2
+ gU (N − 1) , (6)

where gU (x) = U
2 + 1

β
ln ( x+

√
x2+exp(−βU )(1−x2)

1+x
). At low tem-

peratures, the Hxc potential exhibits a sharp (but continuous)
step of size U at occupation N = 1 [26,28,29]. With an
analytic expression for vHxc we can evaluate both terms on the
right-hand side of Eq. (5). In Fig. 1 we show S calculated from
our DFT equation (black) versus the gate v. To demonstrate
the accuracy of the result we also show the Seebeck coefficient
calculated from Eq. (1) using the MB spectral function A(ω) =
N
2 ℓ(ω − v − U ) + (1 − N

2 )ℓ(ω − v) [25] (blue) as well as the
one calculated using the RE approach of Ref. [20] (red),
exact in the limit γ → 0. All three approaches give the same
Seebeck coefficient and densities (see inset). Let us now
discuss how the two terms in Eq. (5) contribute. The KS
Seebeck Ss (green) accounts for the correct linear behavior
(with slope proportional to T −1) at large values of |v|. In
fact, for γ → 0 the KS spectral function becomes As(ω) =
2πδ(ω − v − vHxc) and consequently Ss = −(v + vHxc)/T .
The linear behavior at large |v| is not surprising since the
noninteracting Seebeck coefficient behaves in the same way.
Noteworthy is instead the plateau of Ss for v ∈ (−U,0). This
is a direct consequence of the step in vHxc which pins the
KS level to the chemical potential, thereby blocking electrons
with energy below v + U from entering the impurity site

FIG. 1. Seebeck coefficient S and density N (inset) for the
Anderson model vs gate v for our corrected DFT (black), MB (blue),
and RE (red). The Ss (KS, green) and the xc correction ∂vHxc/∂T

(cyan) are also displayed. The parameters are T = 0.1 and γ = 0.01
(energies in units of U ).

(see inset). The CB-induced plateau in Ss opens a gap in
the noninteracting straight line −v/T , shifting it leftward
by U for v < −U and generating the correct behavior at
large negative values of v. However, Ss misses entirely the
oscillation of S for N ≈ 1, thus severely underestimating the
true Seebeck coefficient. Remarkably, this deficiency is exactly
cured by the xc correction ∂vHxc/∂T (cyan). The temperature
variation of vHxc is the key ingredient for the nonvanish-
ing Seebeck coefficient in the CB regime [20,30–32]. We
emphasize that the LDA potential misses both the plateau
(no step in vHxc) and the oscillation induced by ∂vHxc/∂T
[33].

We now extend the DFT approach to junctions with more
than one level. For T ≫ γ the Seebeck coefficient exhibits
a sawtooth behavior as a function of v, with rapid (but
continuous) jumps occurring when the number N of electrons
crosses an integer. Furthermore, if the level spacing (ε is much
larger than T , a superimposed fine structure of wiggles spaced
by (ε emerges [20]. The wiggles originate from excitations
that bring the system with (N − 1) particles in the ground state
to some excited state with N particles.

The physics of the Seebeck coefficient in a multiple-
level junctions is well captured by the constant interaction
model (CIM). The CIM Hamiltonian reads Ĥ =

∑
iσ εi n̂iσ +

1
2

∑
iσ ̸=jσ ′ Uij n̂iσ n̂jσ ′ , where n̂iσ is the occupation operator

of the ith level with spin σ . The indices i,j run over M
levels and for M = 1 we are back to the Anderson model.
For simplicity we assume that each level is equally coupled to
the left and right leads with tunneling rate γ /2. In this case the
derivation of Eq. (4) can be repeated step by step by replacing
the spectral function A with its trace Tr[A]. Consequently, we
can again express S in a pure DFT framework by calculating
the derivatives of the total number of electrons from the KS
expression N = 2

∫
f (ω)Tr[As(ω)]. The KS spectral function

[As]ij = δijAs,i is diagonal in the level basis and reads
As,i(ω) = ℓ(ω − εi − vHxc,i), where the Hxc potential of level
i depends on the occupations {n} of all the levels. It is

081410-2

Figure	2	The	 exact	 Seebeck	coefficient	(black	and	 red	
lines)	 for	 a	strongly	correlated	electron	system	might	
differ	significantly	from	the	prediction	of	standard	ab-
initio	methods	(green	lines).	From	[4].	

extreme situations: the first one where resistive processes are
dominant and equilibrium can be rapidly achieved (related to
KM) and the second one where although equilibrium cannot
be easily reached, conservation of momentum in collisions
allows us to determine analytically the scattering term
(related to VM).

To obtain j in each limit, an expression for the scatter-
ing term in Eq. (1) is needed. In KM, this is usually done by
the RTA approach; but in VM, the expected form of the dis-
tribution function do not provide a simple expression. In the
particular case when normal collisions are dominant, we sug-
gest that the same RTA expression can be used, leaving the
difference between approaches only in the way to perform
the thermodynamic averages with these relaxation times.

A. Resistive vs normal scattering (equilibrium vs
non-equilibrium)

As indicated before, the expected form of Uq will deter-
mine the choice between a KM or a VM approach. The cal-
culation of the scattering rates depends on it and, at the same
time this depends on which scattering mechanism is domi-
nating the system. Determining the dominating mechanism
is thus the first important question to solve.

Phonons can relax by different mechanisms, colliding
with boundaries, impurities, electrons, and between them.
All these mechanisms are resistive except some part of the
phonon-phonon collisions. Two phonons with wave number
and energy ðq;xqÞ and ðq0;xq0Þ can scatter and produce, as a
result, a new phonon ðq00;xq00Þ. In all events, energy must be
conserved, but the wave number or quasi-momentum can be
lost due to the interaction with the whole lattice. The
equation

qþ q0 ¼ q00 þ G; (4)

where G is a reciprocal lattice vector, expresses the fact that
the total lattice can acquire an amount of momentum G
because the resultant phonon is reflected outside of the first
Brillouin zone (BZ).24 If the quasi-momentum is conserved
(G¼ 0), the scattering processes are called normal or
N-processes; while in the general case ðG 6¼ 0Þ, they are
called Umklapp or U-processes. Regarding the dominance of
the N-processes, two limiting behaviors can be considered
(Fig. 1):

(i) When resistive collisions are dominant and N-processes
are negligible, momentum will be completely dissipated
and its average value is zero. The only way to move the
phonon distribution from equilibrium is by changing its
temperature. In that case, the distribution function takes
the form

fq ¼
1

e!hxq=kBðTþdTÞ % 1
& 1

e!hxq=kBTe1%dT=T % 1
: (5)

Comparing with Eq. (3), an expression for Uq can be
obtained

Uq ¼ !hxq
dT

T
: (6)

In this situation, KM is the most suitable approach to
use. For example, this happens in bulk silicon at low
temperatures, where collisions against the bounda-
ries is the dominant scattering mechanism. However,
at the nanoscale, boundary scattering may dominate
heat transport even up to room temperature due to
size-effects.

(ii) When N-processes are dominant, the system will not
be able to relax the momentum to zero (the quasi-
momentum is conserved) and a displacement u of the
distribution function in the direction of the thermal
gradient is expected. The distribution function takes
the form19

fq ¼
1

eð!hxq%u'qÞ=kBT % 1
; (7)

which is in a non-equilibrium situation. Then, Uq

takes the form

Uq ¼ u ' q: (8)

In this case, the VM approach must be used.

Summing up, Eqs. (6) and (8) are the two forms of Uq

expected for the distribution function in each approach, KM
and VM, respectively, corresponding to two extreme situa-
tions described above. Next, we will use both expressions of
Uq to show that in some situations, they yield equivalent
expressions for the relaxation times.

B. Defining scattering rates

Once we have determined both expressions for Uq in the
two limiting cases, we can use them to determine the

FIG. 1. These schemes illustrate the behavior of the phonons in each regime:
(a) In the kinetic regime, N-processes are negligible. The phonon distribution
is near equilibrium and resistive scatterings tend to bring it back to equilib-
rium. Each phonon contributes independently to the heat flux and so the equa-
tion of the entropy balance must be fulfilled individually by each mode. (b)
In the collective regime, N-processes dominate and the distribution is in non-
equilibrium. Momentum is conserved and shared among the phononic modes
through N-processes. The phonons behave as a collectivity rising a total heat
flux and so the equation of the entropy balance must be fulfilled globally.

164314-3 de Tomas et al. J. Appl. Phys. 115, 164314 (2014)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  158.227.109.1 On: Sun, 18 Sep 2016
19:02:16

Figure	1	Different	energy	and	time	scales	define	
the	regime	for	thermal	transport.	From	[4]. 


